Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene
نویسندگان
چکیده
Iron deficiency is a serious problem around the world, especially in developing countries. The production of iron-biofortified rice will help ameliorate this problem. Previously, expression of the iron storage protein, ferritin, in rice using an endosperm-specific promoter resulted in a two-fold increase in iron concentration in the resultant transgenic seeds. However, further over expression of ferritin did not produce an additional increase in the seed iron concentration, and symptoms of iron deficiency were noted in the leaves of the transgenic plants. In the present study, we aimed to further increase the iron concentration in rice seeds without increasing the sensitivity to iron deficiency by enhancing the uptake and transport of iron via a ferric iron chelator, mugineic acid. To this end, we introduced the soybean ferritin gene (SoyferH2) driven by two endosperm-specific promoters, along with the barley nicotianamine synthase gene (HvNAS1), two nicotianamine aminotransferase genes (HvNAAT-A and -B), and a mugineic acid synthase gene (IDS3) to enhance mugineic acid production in rice plants. A marker-free vector was utilized as a means of increasing public acceptance. Representative lines were selected from 102 transformants based on the iron concentration in polished seeds and ferritin accumulation in the seeds. These lines were grown in both commercially supplied soil (iron-sufficient conditions) and calcareous soil (iron-deficient conditions). Lines expressing both ferritin and mugineic acid biosynthetic genes showed signs of iron-deficiency tolerance in calcareous soil. The iron concentration in polished T3 seeds was increased by 4 and 2.5 times, as compared to that in non-transgenic lines grown in normal and calcareous soil, respectively. These results indicate that the concomitant introduction of the ferritin gene and mugineic acid biosynthetic genes effectively increased the seed iron level without causing iron sensitivity under iron-limited conditions.
منابع مشابه
Molecular Mechanism of Mugineic Acid Family Phytosiderophores Secretion
Iron (Fe) is essential for all living organisms, including humans and plants. To acquire Fe in the soil, graminaceous plants produce and secrete mugineic acid family phytosiderophores (MAs) from their roots. MAs chelate and solubilize insoluble Fe hydroxide in the soil. Subsequently, plants take up Fe-MAs complexes through specific transporters on the root cell membrane. MAs and nicotianamine (...
متن کاملCloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores.
Nicotianamine synthase (NAS), the key enzyme in the biosynthetic pathway for the mugineic acid family of phytosiderophores, catalyzes the trimerization of S-adenosylmethionine to form one molecule of nicotianamine. We purified NAS protein and isolated the genes nas1, nas2, nas3, nas4, nas5-1, nas5-2, and nas6, which encode NAS and NAS-like proteins from Fe-deficient barley (Hordeum vulgare L. c...
متن کاملIron biofortification in rice by the introduction of multiple genes involved in iron nutrition
To address the problem of iron-deficiency anemia, one of the most prevalent human micronutrient deficiencies globally, iron-biofortified rice was produced using three transgenic approaches: by enhancing iron storage in grains via expression of the iron storage protein ferritin using endosperm-specific promoters, enhancing iron translocation through overproduction of the natural metal chelator n...
متن کاملRice Enrichment by Genetic Engineering for Combating Iron and Zinc Deficiency
Iron deficiency anemia and zinc deficiency are among the most recognized forms of micronutrient malnutrition and about two billion of people around the world suffer from it. Monotonous diets based on staple cereals are in fact a poor source of iron and zinc. Rice is a staple food for more than half of the world's population. Various methods have been proposed for food enrichment, but many of t...
متن کاملConstitutive Overexpression of the OsNAS Gene Family Reveals Single-Gene Strategies for Effective Iron- and Zinc-Biofortification of Rice Endosperm
BACKGROUND Rice is the primary source of food for billions of people in developing countries, yet the commonly consumed polished grain contains insufficient levels of the key micronutrients iron (Fe), zinc (Zn) and Vitamin A to meet daily dietary requirements. Experts estimate that a rice-based diet should contain 14.5 µg g(-1) Fe in endosperm, the main constituent of polished grain, but breedi...
متن کامل